2,379 research outputs found

    Influence of diffusion on models for non-equilibrium wetting

    Full text link
    It is shown that the critical properties of a recently studied model for non-equilibrium wetting are robust if one extends the dynamic rules by single-particle diffusion on terraces of the wetting layer. Examining the behavior at the critical point and along the phase transition line, we identify a special point in the phase diagram where detailed balance of the dynamical processes is partially broken.Comment: 6 pages, 9 figure

    The glass transition and crystallization kinetic studies on BaNaB9O15 glasses

    Full text link
    Transparent glasses of BaNaB9O15 (BNBO) were fabricated via the conventional melt-quenching technique. The amorphous and the glassy nature of the as-quenched samples were respectively, confirmed by X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The glass transition and crystallization parameters were evaluated under non-isothermal conditions using DSC. The correlation between the heating rate dependent glass transition and the crystallization temperatures was discussed and deduced the Kauzmann temperature for BNBO glass-plates and powdered samples. The values of the Kauzmann temperature for the plates and powdered samples were 776 K and 768 K, respectively. Approximation-free method was used to evaluate the crystallization kinetic parameters for the BNBO glass samples. The effect of the sample thickness on the crystallization kinetics of BNBO glasses was also investigated.Comment: 23 pages, 12 figure

    Finite size effects in nonequilibrium wetting

    Full text link
    Models with a nonequilibrium wetting transition display a transition also in finite systems. This is different from nonequilibrium phase transitions into an absorbing state, where the stationary state is the absorbing one for any value of the control parameter in a finite system. In this paper, we study what kind of transition takes place in finite systems of nonequilibrium wetting models. By solving exactly a microscopic model with three and four sites and performing numerical simulations we show that the phase transition taking place in a finite system is characterized by the average interface height performing a random walk at criticality and does not discriminate between the bounded-KPZ classes and the bounded-EW class. We also study the finite size scaling of the bKPZ universality classes, showing that it presents peculiar features in comparison with other universality classes of nonequilibrium phase transitions.Comment: 14 pages, 6figures, major change

    A glycosylphosphatidylinositol-anchored carbonic anhydrase-related protein of Toxoplasma gondii is important for rhoptry biogenesis and virulence

    Get PDF
    Carbonic anhydrase-related proteins (CARPs) have previously been described as catalytically inactive proteins closely related to α-carbonic anhydrases (α-CAs). These CARPs are found in animals (both vertebrates and invertebrates) and viruses as either independent proteins or domains of other proteins. We report here the identification of a new CARP (TgCA_RP) in the unicellular organism Toxoplasma gondii that is related to the recently described η-class CA found in Plasmodium falciparum. TgCA_RP is posttranslationally modified at its C terminus with a glycosylphosphatidylinositol anchor that is important for its localization in intracellular tachyzoites. The protein localizes throughout the rhoptry bulbs of mature tachyzoites and to the outer membrane of nascent rhoptries in dividing tachyzoites, as demonstrated by immunofluorescence and immunoelectron microscopy using specific antibodies. T. gondii mutant tachyzoites lacking TgCA_RP display a growth and invasion phenotype in vitro and have atypical rhoptry morphology. The mutants also exhibit reduced virulence in a mouse model. Our results show that TgCA_RP plays an important role in the biogenesis of rhoptries

    Визначення напрямків аудиторської перевірки запасів підприємств текстильної промисловості

    Get PDF
    At about 20 % of total GHG emissions, land use, land use change and the forestry (LULUCF) sectors contribute significantly to global green house gas (GHG) emissions. This percentage may be significantly higher in countries with huge forest resources, like Indonesia. In Indonesia, forests are increasingly converted to satisfy the growing demand for commercial agricultural products, most notably oil palm (Elaeis guineensis), not only for food but also for biofuels. Although forest losses caused by oil palm expansion are considered to be one of major contributors to land use change (LUC), oil palm expansion has less visible additional indirect effects in accelerating forest transformation. These are hardly studied, as they require an in depth knowledge and understanding of socio-economic changes caused by oil palm expansion at the grass-root level, the household level. These complex indirect effects receive no or only scant attention. This is striking to note, since they may become a major cause of forest conversion in the (near) future. Oil palm production leads to complex population redistribution. Local people are displaced not only by large scale investors, but also sold out by in-migrants. Large numbers of migrants are entering the Indonesia oil palm producing regions, hoping to benefit from the economic opportunities oil palm plantations provide. The search for arable land by a fast growing population puts increasing pressure on remaining (protected) forest areas, when they start investing in land for small scale oil palm plantations. Many of the remaining areas consist of peatlands. GHG emissions are therefore expected to rise tremendously. Analyzing these indirect socio-economic land use effects associated with oil palm expansion is therefore urgently required and is the main objective of this chapter
    corecore